Basic Matrix Operations (easy to use/read)
In denotes the n×n identity matrix, with Iij={1 i = j 0 i ≠ j
For example; 02×3=[000000], I2=[1001]
Transpose of Matrix
A=[abcdef]⇒ AT=[adbecf]Summation of Matrices (entrywise)
[abcd]+[xyzt]=[a+xb+yc+zd+t]Subtraction of Matrices (entrywise)
[abcd]−[xyzt]=[a−xb−yc−zd−t]Properties of matrix addition
- commutative: A+B=B+A
- associative: (A+B)+C=A+(B+C) , so we can write as A+B+C
- A+0=0+A=A;A−A=0
- (A+B)T=AT+BT
Scalar Multiplication
s[xyzt]=[sxsyszst]Dot Product
a and b are n dimensional vectors;a=[a1,a2,⋯,an], b=[b1,b2,⋯,bn]
Dot product of these two vectors is a scalar;
a⋅b=⟨a,b⟩=n∑i=1aibi=a1b1+a2b2+⋯+anbn
Also; a⋅b=aTb , which means, same as above;
aTb=[a1a2⋯an][b1b2⋮bn]=n∑i=1aibi=a1b1+a2b2+⋯+anbn
Matrix - Vector Product
[a11a12⋯a1na21c22⋯a2n⋮⋮⋱⋮am1am2⋯amn][x1x2⋮xn] =[a11x1+a12x2+⋯+a1nxna21x1+a22x2+⋯+a2nxn⋮am1x1+am2x2+⋯+amnxn]Matrix multiplication
First one is m×p , second one is p×n and output matrix is m×n .
[a11a12⋯a1pa21a22⋯a2p⋮⋮⋱⋮am1am2⋯amp][b11b12⋯b1nb21b22⋯b2n⋮⋮⋱⋮bp1bp2⋯bpn]=[c11c12⋯c1nc21c22⋯c2n⋮⋮⋱⋮cm1cm2⋯cmn]
[a1a2⋯an][b1b2⋮bn]=a1b1+a2b2+⋯+anbn
shows;
cij=⟨arowi,bcolj⟩=ai1b1j+ai2b2j+ ... + aipbpj,1≤i≤m;1≤j≤n
so, output will be equal to;
[⟨arow1,bcol1⟩⟨arow1,bcol2⟩⋯⟨arow1,bcoln⟩⟨arow2,bcol1⟩⟨arow2,bcol2⟩⋯⟨arow2,bcoln⟩⋮⋮⋱⋮⟨arowm,bcol1⟩⟨arowm,bcol2⟩⋯⟨arowm,bcoln⟩]
- 0A=0, A0=0 (here 0 can be scalar, or a compatible matrix)
- IA=A, AI=A
- A(BC)=(AB)C so we can write ABC, but, order must be same.
- α(AB)=(αA)B , where α is a scalar.
- A(B+C)=AB+AC,(A+B)C=AC+BC
- (AB)T=BTAT
Matrix powers
A must be n×n sized matrix, so it can be multiplicative by itself;Ak=AA⋯A⏟k times
- A0=I
- AkAl=Ak+l
Determinant
For two dimensional matrix A;
A=[abcd]⇒ det(A)=|A|=|abcd|=ad−bc
For three dimensional matrix M;
For three dimensional matrix M;
M=[m11m12m13m21m22m23m31m32m33]⇒ det(M)=|M|=|m11m12m13m21m22m23m31m32m33|
=m11|m22m23m32m33|−m12|m21m23m31m33|+m13|m21m22m31m32|=m11(m22m33−m23m32)−m12(m21m33−m23m31)+m13(m21m32−m22m31)
m11m22m33+m12m23m31+m13m21m32−m13m22m31−m12m21m33−m11m23m32
=m11|m22m23m32m33|−m12|m21m23m31m33|+m13|m21m22m31m32|=m11(m22m33−m23m32)−m12(m21m33−m23m31)+m13(m21m32−m22m31)
m11m22m33+m12m23m31+m13m21m32−m13m22m31−m12m21m33−m11m23m32
Matrix inverse
Again, A must be n×n sized matrix, F satisfies FA=I;F is called the inverse of A, and is denoted A−1,
The matrix A is called invertible or nonsingular.
Assuming A, B are invertible, x∈Rn,α≠0;
- A−k=(A−1)k
- (A−1)−1=A
- (AB)−1=B−1A−1
- (AT)−1=(A−1)T
- I−1=I
- (αA)−1=(1/α)A−1
- if y=Ax⇒x=A−1y⇒A−1y=A−1Ax=Ix=x
TODO Add more
https://cms.inonu.edu.tr/uploads/old/5/357/matrislerde-islem-1.pdf
http://ee263.stanford.edu/notes/matrix-primer-lect2.pdf
http://mathworld.wolfram.com/MatrixInverse.html
http://mathinsight.org/matrix_vector_multiplication
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Dot_product
Sources
http://www.onemathematicalcat.org/MathJaxDocumentation/TeXSyntax.htmhttps://cms.inonu.edu.tr/uploads/old/5/357/matrislerde-islem-1.pdf
http://ee263.stanford.edu/notes/matrix-primer-lect2.pdf
http://mathworld.wolfram.com/MatrixInverse.html
http://mathinsight.org/matrix_vector_multiplication
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Dot_product
Comments
Post a Comment