Basic Matrix Operations (easy to use/read)




\( 0_{m \times n} \)  denotes the  \( m \times n \)  zero matrix, with all entries zero.

\( I_{n} \)  denotes the \( n \times n \)  identity matrix, with \( I_{ij}= \cases{ 1 & i = j \cr 0 & i $\ne$ j } \)

For example;  \( 0_{2 \times 3} = \left\lbrack \matrix{ 0 & 0 & 0 \cr 0 & 0 & 0 } \right\rbrack, \)  \(  I_{2} =  \left\lbrack \matrix{ 1 & 0 \cr 0 & 1 } \right\rbrack \)




Transpose of Matrix 

\( A = \left\lbrack \matrix{ a & b & c \cr d & e & f } \right\rbrack {⇒}  \)  \({A^T} = \left\lbrack \matrix{ a & d \cr b & e \cr c & f } \right\rbrack \)

Summation of Matrices (entrywise)

\( \left\lbrack \matrix{ a & b \cr c & d } \right\rbrack + \left\lbrack \matrix{ x & y \cr z & t} \right\rbrack = \left\lbrack \matrix{ a+x & b+y \cr c+z & d+t } \right\rbrack\)

Subtraction of Matrices (entrywise)

\( \left\lbrack \matrix{ a & b \cr c & d } \right\rbrack - \left\lbrack \matrix{ x & y \cr z & t} \right\rbrack = \left\lbrack \matrix{ a-x & b-y \cr c-z & d-t } \right\rbrack\)

Properties of matrix addition

  • commutative: \( A + B = B + A \)
  • associative: \(( A + B ) + C = A + ( B + C ) \) , so we can write as  \(A + B + C \)
  • \( A + 0 = 0 + A = A; A −A = 0 \)
  • \( ( A + B )^T = A^T + B^T \)

Scalar Multiplication

\( s \left\lbrack \matrix{ x & y \cr z & t} \right\rbrack = \left\lbrack \matrix{ sx & sy \cr sz & st } \right\rbrack\)

Dot Product

\(a\)  and  \(b\)  are \(n\) dimensional vectors;

\( a = \lbrack a_{1}, a_{2}, ⋯ ,a_{n} \rbrack , \)  \( b =  \lbrack b_{1}, b_{2}, ⋯ , b_{n} \rbrack \)

Dot product of these two vectors is a scalar;

\( a \cdot b = \langle a, b \rangle = \sum\limits_{i=1}^n a_i b_i = a_1 b_1 + a_2 b_2 + ⋯ + a_n b_n \)

Also;  \( a \cdot b = a^T b \) , which means, same as above;

\( a^T b = \lbrack \matrix{ a_{1} & a_{2} & ⋯ & a_{n}} \rbrack \left\lbrack \matrix{b_{1} \cr b_{2} \cr ⋮\cr b_{n}} \right\rbrack = \sum\limits_{i=1}^n a_i b_i = a_1 b_1 + a_2 b_2 + ⋯ + a_n b_n \)

Matrix - Vector Product

\( \left\lbrack \matrix{ a_{11} & a_{12} & ⋯ & a_{1n} \cr a_{21} & c_{22} & ⋯ &a_{2n} \cr ⋮ & ⋮ & ⋱ & ⋮ \cr a_{m1} & a_{m2} &  ⋯& a_{mn} } \right\rbrack \left\lbrack \matrix{ x_{1} \cr x_{2} \cr ⋮ \cr x_{n} } \right\rbrack\ = \left\lbrack \matrix{ a_{11}x_{1} + a_{12}x_{2} + ⋯ + a_{1n}x_{n} \cr a_{21}x_{1} + a_{22}x_{2} + ⋯ + a_{2n}x_{n} \cr ⋮ \cr a_{m1}x_{1} + a_{m2}x_{2} +  ⋯ + a_{mn}x_{n} } \right\rbrack\)

Matrix multiplication

First one is  \(m \times p \) , second one is  \(p \times n \)  and output matrix is \(m \times n \) .

\( \left\lbrack \matrix{ a_{11} & a_{12} & ⋯ & a_{1p} \cr a_{21} & a_{22} & ⋯ &a_{2p} \cr ⋮ & ⋮ & ⋱ & ⋮ \cr a_{m1} & a_{m2} &  ⋯&a_{mp} } \right\rbrack \left\lbrack \matrix{ b_{11} & b_{12} & ⋯ & b_{1n} \cr b_{21} & b_{22} & ⋯ &b_{2n} \cr ⋮ & ⋮ & ⋱ & ⋮ \cr b_{p1} & b_{p2} &  ⋯& b_{pn} } \right\rbrack = \left\lbrack \matrix{ c_{11} & c_{12} & ⋯ & c_{1n} \cr c_{21} & c_{22} & ⋯ &c_{2n} \cr ⋮ & ⋮ & ⋱ & ⋮ \cr c_{m1} & c_{m2} &  ⋯& c_{mn} } \right\rbrack\)

\( \langle \) Column Vector \(,\) Row Vector \( \rangle \) = Scalar ; (Gives value at intersection point of those column and row in output matrix);

\( \lbrack \matrix{ a_{1} & a_{2} & ⋯ & a_{n}} \rbrack \left\lbrack \matrix{b_{1} \cr b_{2} \cr ⋮\cr b_{n}} \right\rbrack = a_{1} b_{1} + a_{2} b_{2} + ⋯ + a_{n} b_{n} \)

shows;

\( c_{ij} = \langle a_{row_i}, b_{col_j} \rangle = a_{i1} b_{1j} + a_{i2} b_{2j} + ~ . . . ~+ ~a_{ip} b_{pj} , 1 \le i \le m ; 1 \le j \le n \)

so, output will be equal to;

\( \left\lbrack \matrix{ \langle a_{row_1},b_{col_1} \rangle & \langle a_{row_1},b_{col_2} \rangle & ⋯ & \langle a_{row_1},b_{col_n} \rangle \cr \langle a_{row_2},b_{col_1} \rangle & \langle a_{row_2},b_{col_2} \rangle & ⋯ & \langle a_{row_2},b_{col_n} \rangle \cr ⋮ &⋮ & ⋱ &⋮ \cr \langle a_{row_m},b_{col_1} \rangle & \langle a_{row_m},b_{col_2} \rangle & ⋯ & \langle a_{row_m},b_{col_n} \rangle } \right\rbrack\)


  • \(0A = 0,\)  \( A0 = 0 \)    (here \(0\) can be scalar, or a compatible matrix)
  • \(IA = A,\)  \( AI = A \)
  • \(A(BC) = (AB)C\)  so we can write \(ABC\), but, order must be same.
  • \( \alpha (AB) =  (\alpha A ) B\) , where \(\alpha\) is a scalar.
  • \( A (B+C) = AB + AC, (A+B)C = AC + BC \)
  • \( (AB)^T = B^T A^T \)

Matrix powers

 \(A\)  must be \( n \times n \) sized matrix, so it can be multiplicative by itself;

 \( A^k = \underbrace{A A ⋯ A }_{k\rm\ times} \)

  • \(A^0 = I\)
  • \(A^k A^l = A^{k + l}\)


Determinant 

For two dimensional matrix \(A\);

\( A = \left\lbrack \matrix{ a & b \cr c & d } \right\rbrack {⇒} \) \( \det(A) = |A| = \left| \matrix{ a & b \cr c & d } \right| = ad - bc \)

For three dimensional matrix \(M\);

\( M = \left\lbrack \matrix{ \color{#67D4FF}{m_{11}} & \color{#FF8B8B}{m_{12}} & m_{13} \cr m_{21} & \color{#67D4FF}{m_{22}} & \color{#FF8B8B}{m_{23}} \cr \color{#FF8B8B}{m_{31}} & m_{32} & \color{#67D4FF}{m_{33}} } \right\rbrack {⇒} \) \( \det(M) = |M| = \left| \matrix{ \color{#67D4FF}{\color{#67D4FF}{m_{11}}} & \color{#FF8B8B}{m_{12}} & m_{13} \cr m_{21} & \color{#67D4FF}{m_{22}} & \color{#FF8B8B}{m_{23}} \cr \color{#FF8B8B}{m_{31}} & m_{32} & \color{#67D4FF}{m_{33}} } \right| \)

\( = \color{#67D4FF}{m_{11}} \left| \matrix{ \color{#67D4FF}{m_{22}} & \color{#FF8B8B}{m_{23}} \cr m_{32} & \color{#67D4FF}{m_{33}} } \right| - \color{#FF8B8B}{m_{12}} \left| \matrix{ m_{21} & \color{#FF8B8B}{m_{23}} \cr \color{#FF8B8B}{m_{31}} & \color{#67D4FF}{m_{33}} } \right| + m_{13}  \left| \matrix{ m_{21} & \color{#67D4FF}{m_{22}} \cr \color{#FF8B8B}{m_{31}} & m_{32} } \right| = \color{#67D4FF}{m_{11}}(\color{#67D4FF}{m_{22}} \color{#67D4FF}{m_{33}} − \color{#FF8B8B}{m_{23}} m_{32}) − \color{#FF8B8B}{m_{12}}(m_{21} \color{#67D4FF}{m_{33}} − \color{#FF8B8B}{m_{23}} \color{#FF8B8B}{m_{31}}) + m_{13}(m_{21} m_{32} − \color{#67D4FF}{m_{22}} \color{#FF8B8B}{m_{31}})\)

\(\color{#67D4FF}{m_{11}} \color{#67D4FF}{m_{22}} \color{#67D4FF}{m_{33}} + \color{#FF8B8B}{m_{12}} \color{#FF8B8B}{m_{23}} \color{#FF8B8B}{m_{31}} + m_{13} m_{21} m_{32} - m_{13} \color{#67D4FF}{m_{22}} \color{#FF8B8B}{m_{31}} - \color{#FF8B8B}{m_{12}} m_{21} \color{#67D4FF}{m_{33}} - \color{#67D4FF}{m_{11}} \color{#FF8B8B}{m_{23}} m_{32} \)


Matrix inverse

Again, \(A\)  must be \( n \times n \) sized matrix,  \(F\)  satisfies  \( F A = I \);
\(F\) is called the inverse of \(A\), and is denoted \(A^{-1}\),
The matrix \(A\) is called invertible or nonsingular.

Assuming  \(A\),  \(B\) are invertible, \(x \in \mathbf{R}^n, \alpha \ne 0 \);
  • \( A^{−k} = ({A^{−1}}) ^k \)
  • \( ({A^{−1}}) ^{-1} = A \)
  • \( (AB) ^{-1} = B^{-1}A^{-1} \)
  • \( ({A^{T}}) ^{-1} = ({A^{−1}}) ^T\)
  • \( I^{−1} = I \)
  • \( (\alpha A)^{−1}  =  (1 / \alpha )A^{−1}\)
  • if  \( y = Ax \Rightarrow x = A^{-1}y \Rightarrow A^{−1}y = A^{−1}Ax = Ix = x\)



TODO Add more



Sources

http://www.onemathematicalcat.org/MathJaxDocumentation/TeXSyntax.htm
https://cms.inonu.edu.tr/uploads/old/5/357/matrislerde-islem-1.pdf
http://ee263.stanford.edu/notes/matrix-primer-lect2.pdf
http://mathworld.wolfram.com/MatrixInverse.html
http://mathinsight.org/matrix_vector_multiplication
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Dot_product








Comments