Basic Matrix Operations (easy to use/read)




0m×n  denotes the  m×n  zero matrix, with all entries zero.

In  denotes the n×n  identity matrix, with Iij={1 i = j 0 i  j 

For example;  02×3=[000000],  I2=[1001]




Transpose of Matrix 

A=[abcdef]  AT=[adbecf]

Summation of Matrices (entrywise)

[abcd]+[xyzt]=[a+xb+yc+zd+t]

Subtraction of Matrices (entrywise)

[abcd][xyzt]=[axbyczdt]

Properties of matrix addition

  • commutative: A+B=B+A
  • associative: (A+B)+C=A+(B+C) , so we can write as  A+B+C
  • A+0=0+A=A;AA=0
  • (A+B)T=AT+BT

Scalar Multiplication

s[xyzt]=[sxsyszst]

Dot Product

a  and  b  are n dimensional vectors;

a=[a1,a2,,an],  b=[b1,b2,,bn]

Dot product of these two vectors is a scalar;

ab=a,b=ni=1aibi=a1b1+a2b2++anbn

Also;  ab=aTb , which means, same as above;

aTb=[a1a2an][b1b2bn]=ni=1aibi=a1b1+a2b2++anbn

Matrix - Vector Product

[a11a12a1na21c22a2nam1am2amn][x1x2xn] =[a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn]

Matrix multiplication

First one is  m×p , second one is  p×n  and output matrix is m×n .

[a11a12a1pa21a22a2pam1am2amp][b11b12b1nb21b22b2nbp1bp2bpn]=[c11c12c1nc21c22c2ncm1cm2cmn]

Column Vector , Row Vector  = Scalar ; (Gives value at intersection point of those column and row in output matrix);

[a1a2an][b1b2bn]=a1b1+a2b2++anbn

shows;

cij=arowi,bcolj=ai1b1j+ai2b2j+ ... + aipbpj,1im;1jn

so, output will be equal to;

[arow1,bcol1arow1,bcol2arow1,bcolnarow2,bcol1arow2,bcol2arow2,bcolnarowm,bcol1arowm,bcol2arowm,bcoln]


  • 0A=0,  A0=0    (here 0 can be scalar, or a compatible matrix)
  • IA=A,  AI=A
  • A(BC)=(AB)C  so we can write ABC, but, order must be same.
  • α(AB)=(αA)B , where α is a scalar.
  • A(B+C)=AB+AC,(A+B)C=AC+BC
  • (AB)T=BTAT

Matrix powers

 A  must be n×n sized matrix, so it can be multiplicative by itself;

 Ak=AAAk times

  • A0=I
  • AkAl=Ak+l


Determinant 

For two dimensional matrix A;

A=[abcd] det(A)=|A|=|abcd|=adbc

For three dimensional matrix M;

M=[m11m12m13m21m22m23m31m32m33] det(M)=|M|=|m11m12m13m21m22m23m31m32m33|

=m11|m22m23m32m33|m12|m21m23m31m33|+m13|m21m22m31m32|=m11(m22m33m23m32)m12(m21m33m23m31)+m13(m21m32m22m31)

m11m22m33+m12m23m31+m13m21m32m13m22m31m12m21m33m11m23m32


Matrix inverse

Again, A  must be n×n sized matrix,  F  satisfies  FA=I;
F is called the inverse of A, and is denoted A1,
The matrix A is called invertible or nonsingular.

Assuming  A,  B are invertible, xRn,α0;
  • Ak=(A1)k
  • (A1)1=A
  • (AB)1=B1A1
  • (AT)1=(A1)T
  • I1=I
  • (αA)1=(1/α)A1
  • if  y=Axx=A1yA1y=A1Ax=Ix=x



TODO Add more



Sources

http://www.onemathematicalcat.org/MathJaxDocumentation/TeXSyntax.htm
https://cms.inonu.edu.tr/uploads/old/5/357/matrislerde-islem-1.pdf
http://ee263.stanford.edu/notes/matrix-primer-lect2.pdf
http://mathworld.wolfram.com/MatrixInverse.html
http://mathinsight.org/matrix_vector_multiplication
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Dot_product








Comments